Jeppe Kari

Born: 1985 Citizenship: Danish E-mail: <u>jepka@dtu.dk</u> **ORCID** : 0000-0003-3792-3856 , **WoS:** AAP-6649-2021 **Scopus:** 56425775500

RESEARCH INTERESTS

My field of research is biophysical chemistry with an expertise in biocatalysis. I am particular interesting in understanding the kinetics and thermodynamic of enzymes that work at the solid-liquid interface (interfacial enzymes). My vision is to establish the field of interfacial enzymology (heterogeneous biocatalysis) and contribute to the bridging of inorganic heterogeneous catalysis and heterogeneous biocatalysis by finding common theoretical concepts. Further, I which to use empirical scaling relation and experimental descriptors to predict enzyme activity in silico and design better enzymes using theory- and computational-guided design. In my research I try to develop experimental assays and techniques to experimentally characterize interfacial enzyme and extract experimental descriptors to understand trends. Kinetic modeling play a crucial role in my research as it act as the link between structure and function.

EMPLOYMENTS

2019 - now	Postdoc at the Technical University of Denmark in the Dept. of Biotech. and Biomedicine
2018 - now	Assistant professor, Dept. of Science and Environment, Roskilde University
	I have been granted 3 years leave of absence to focus on research (Postdoc at DTU) that
	would help to establish the field of heterogeneous catalysis. This have resulted in a newly
	published article in Nature Communication (see list of publications, P1).
2016-2017	Postdoc, Department of Science and Environment, Roskilde University
2013-2016	Ph.D. fellow in biochemistry, Department of Science and Environment, Roskilde University
EDUCATION	I AND DEGREES
2017	Ph.D., Interfacial Enzymology, Department of Science and Environment, RUC
2013	MSc, Mol. biology and Chemistry, Department of Science and Environment, RUC
2009	BSc, Mol. biology and Chemistry, Department of Science and Environment, RUC
PATENTS	

2014	Westh, P; Kari, J; Olsen, J; Borch, K; Jensen, K; Krogh, KBRM (May 1, 2014) PCT International
	Patent Appl. W0/2014/064115
2014	Borch, K; Jensen, K; Krogh, KBRM; McBrayer, B; Westh, P; Kari, J; Olsen, J; Sørensen, T; Windahl, M;
	Xu, H (September 12, 2014) PCT International Patent Appl. WO/2014/138672

PUBLICATIONS

Web of science	(since 2014)	

Publications: 24 Citations : 304 (410 Goggle Scholar) h-index: 11 (12 Goggle Scholar)

Selected publications since 2014 (full list at page 4-5)

2014	Kari J. et al. , Journal of Biological Chemistry, 289 (47), 2014
	Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity
2015	F. Colussi et al., Journal of Biological Chemistry, 290 (4), 2015
	Probing substrate interactions in the active tunnel of a catalytically deficient
	cellobiohydrolase (Cel7)
2016	<u>Kari J.</u> et al., <i>Biochemistry</i> 56 (1), 2016
	Anomeric Selectivity and Product Profile of a Processive Cellulase
2017	<u>Kari J</u> . et al., <i>ACS Catalysis</i> 7 (7), 2017
	An Inverse Michaelis–Menten Approach for Interfacial Enzyme Kinetics
2018	<u>Kari J.</u> et al., <i>ACS Catalysis</i> 8 (12), 2018
	Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis
2019	<u>Kari J.</u> et al., <i>Analytical Biochemistry</i> 586, 2019
	A practical approach to steady-state kinetic analysis of cellulases acting on their natural
	insoluble substrate
2020	<u>Kari J.</u> et al., <i>Biochemical Journal</i> 477 (10), 2020
	A steady-state approach for inhibition of heterogeneous enzyme reactions
2021	Kari J. et al., Nature Communication 12, 3847, 2021
	Physical constraints and functional plasticity of cellulases

TEACHING AND PAST JOB EXPERIENCE

2021	Quantitative analysis and modeling in protein science (Graduate course) Asst. teacher, DTU
2021	Cross Institutional Molecular Biophysics (PhD course), Assistant teacher, DTU
2019 - now	Experimental Enzyme Technology (Graduate course), Teacher, DTU
2017/18	Methods in biophysical chemistry (Graduate course), Teacher, Roskilde University
2018	Frontiers in chemistry (Graduate course), Teacher, Roskilde University
2015	Chemistry of ions (Undergraduate course), Assistant teacher, Roskilde University
2015	Organic chemistry (Undergraduate course), Assistant teacher, Roskilde University
2014	Biological chemistry (Undergraduate course), Assistant teacher, Roskilde University
2014	Laboratory course (Undergraduate course), Assistant teacher, Roskilde University
2013	General Chemistry (Undergraduate course), Assistant teacher, Roskilde University
2013	Microcalorimetry (Graduate course), Assistant teacher, Roskilde University
2010-2011	General Chemistry (High school), Teacher, VUC, Copenhagen
2009-2011	General Calculus (High school), Teacher, Niels Brock Business College, Copenhagen

Supervision PhD (co-supervisor) : 2

Kay Schaller (expected 2021, DTU), Gustavo Avelar Molina (expected 2021, DTU)

Master theses: 3

Mario Paolo Penta (expected 2021, DTU), Maria Nørr (2018, RUC), Jeannie Rasmussen (2018, RUC)

Bachelor theses: 9

Zara Alam (2015, RUC), Thomas Andersen (2015, RUC), Kamila Kamuda (2015, RUC), Josh Shailes (2015, RUC), Nanna Rolsted Sørensen (2015, RUC), Emma Sofie Ahrenkiel Andersen (2018, RUC), Lea Marie Juul Christensen (2018, RUC), Mikala Meling Tang (2018, RUC) and Matilde Zinck Leth-Espensen (2018, RUC)

Graduate project: 2

Iro-Efthymia Pappa (Special course 2021, DTU), Morten Bjørn Nielsen (Special course 2020, DTU)

Undergraduate project: 4 undergraduate projects (30 ETCS) at Roskilde University from 2013-2017

Certificate of University Teaching and Learning, CUTL (Expected 2021, see attachment) Certified to teach English-medium courses (see see attachment)

CONFERENCES, WORKSHOPS AND SEMINARS

2013	4th Annual Workshop on Enzymatic Hydrolysis of Insoluble
	Organizer of the 2-day workshop at Søminestationen, Holdbæk
2013	Novozymes A/S,
	Oral presentation, Novozymes A/S, Bagsværd
	Product inhibition of cellobiohydrolases is a two-edged sword.
2015	Gordon Research Conference
	Poster at the Gordon Research Conference on "Cellulosomes, cellulases and other
	carbohydrate modifying enzymes", New Hampshire
	Odd and even product ratio as a measure of processivity for cellulase
2017	Stanford University
	Poster at the SUNCAT Summer Institute 2017 entitled "Fundamentals and Applications of
	Heterogeneous Catalysis", California
	Application of the Sabatier Principle in Heterogeneous Biocatalysis
2017	Roskilde University
	Oral presentation, Department of Science and Environment, Roskilde University
	Inverse enzyme kinetics – same same but different
2018	Kaj Ulrik Linderstrøm-Lang Symposium
	Poster at the Kaj Ulrik Linderstrøm-Lang Symposium entitled "Protein order and disorder",
	Copenhagen University

	Application of the Sabatier principle in heterogeneous biocatalysis
2018	Technical University of Denmark
	Oral presentation, Dept. of Biotechnology and Biomedicine
	Exploring the functional role of the product binding site of Cellobiohydrolase Cel7A
2019	19th protein DTU workshop
	Poster at the 19th protein DTU workshop, Dept. of Biotechnology and Biomedicine
	Linear free energy relationship for cellulolytic enzymes
2019	Technical University of Denmark,
	Oral presentation, Dept. of Biotechnology and Biomedicine
	A Steady-State Approach for inhibition of Heterogeneous Enzyme reactions
2020	Technical University of Denmark,
	Oral presentation, Dept. of Biotechnology and Biomedicine
	Bridging the gap between heterogeneous- and biocatalysis
2020	Roskilde University
	Invited talk Department of Science and Environment, Roskilde University
	Linear scaling relationships in heterogeneous (bio)catalysis
2020	Technical University of Denmark,
	Oral presentation, Dept. of Biotechnology and Biomedicine
	Protein-ligand binding heterogeneity
2020	Novozymes A/S,
	Oral presentation, Novozymes A/S, Lyngby
	The simplifying power of scaling relationships - A bird's-eye view on cellulase activity

POPULAR SCIENCE AND MEDIA

izyme

POSITION OF TRUST

2010-2012	Union representative, Experimentarium Science Museum, Copenhagen
2009-2011	Study board of Chemistry, Roskilde University

LIST OF PUBLICATIONS

P1	<u>Kari, J</u> ., Molina, G. , Schaller, K., Schiano-di-Cola, C., Christensen, S. J., Badino, S., Sørensen, T.H. , Røjel, N. , Keller, M. , Sørensen, N., Kołaczkowski, B., Olsen, J.P. , Krogh, K.B.R.M,	
	Jensen, K., Cavaleiro, A.M., Peters, G.H.J, Spodsberg, N., Borch, K., Westh, P. Physical constraints	
P2	Schaller, K.S., <u>Kari, J</u> ., Molina, G.A., Tidemand, K.D., Borch, K., Peters, G.H.J., Westh, P., Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach	
P3	(2021) ACS Omega, 6 (2), pp. 1547-1555. Keller, M.B., Badino, S.F., Røjel, N., Sørensen, T.H., <u>Kari, J.,</u> McBrayer, B., Borch, K., Blossom, B.M.,	
	LPMOs on cellobiohydrolases, (2021) Journal of Biological Chemistry, 296, 100504, .	
Ρ4	Røjel, N., <u>Kari, I</u> ., Sørensen, T.H., Borch, K., Westh, P., pH profiles of cellulases depend on the substrate and architecture of the binding region, (2020) Biotechnology and Bioengineering, 117 (2), pp. 382-391.	
P5	Kari, J., Schiano-Di-Cola, C., Hansen, S.F., Badino, S.F., Sørensen, T.H., Cavaleiro, A.M., Borch, K., Westh, P., A steady-state approach for inhibition of heterogeneous enzyme reactions, (2020)	
P6	Olsen, J.P., <u>Kari, J</u> ., Windahl, M.S., Borch, K., Westh, P., Molecular recognition in the product site of cellobiohydrolase Cel7A regulates processive step length (2020) Biochemical Journal, 477 (1),	
Ρ7	Røjel, N., <u>Kari, J</u> ., Sørensen, T.H., Badino, S.F., Morth, J.P., Schaller, K., Cavaleiro, A.M., Borch, K., Westh, P., Substrate binding in the processive cellulase CeI7A: Transition state of complexation and roles of conserved tryptophan residues (2020) Journal of Biological Chemistry, 295 (6), pp. 1454-1463	

P8	<u>Kari, J</u> ., Christensen, S.J., Andersen, M., Baiget, S.S., Borch, K., Westh, P., A practical approach to steady-state kinetic analysis of cellulases acting on their natural insoluble substrate (2019) Analytical Biochemistry, 586, 113411
P9	Schiano-di-Cola, C., Røjel, N., Jensen, K., <u>Kari, J.</u> , Sørensen, T.H., Borch, K., Westh, P., Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity (2019) Journal of Biological Chemistry, 294 (6), pp. 1807-1815.
P10	Kari, J., Olsen, J.P., Jensen, K., Badino, S.F., Krogh, K.B.R.M., Borch, K., Westh, P., Sabatier Principle for Interfacial (Heterogeneous) Enzyme Catalysis (2018) ACS Catalysis, 8 (12), pp. 11966-11972.
P11	Christensen, S.J., <u>Kari, J.</u> , Badino, S.F., Borch, K., Westh, P. Rate-limiting step and substrate accessibility of cellobiohydrolase Cel6A from Trichoderma reesei (2018) FEBS Journal, 285 (23), pp. 4482-4493.
P12	Westh, P., Borch, K., Sørensen, T., Tokin, R., <u>Kari, J.</u> , Badino, S., Cavaleiro, M.A., Røjel, N., Christensen, S., Vesterager, C.S., Schiano-di-Cola, C., Thermoactivation of a cellobiohydrolase (2018) Biotechnology and Bioengineering, 115 (4), pp. 831-838
P13	Andersen, M., <u>Kari, J</u> ., Borch, K., Westh, P., Michaelis–Menten equation for degradation of insoluble substrate (2018) Mathematical Biosciences, 296, pp. 93-97.
P14	Borisova, A.S., Eneyskaya, E.V., Jana, S., Badino, S.F., <u>Kari, J.</u> , Amore, A., Karlsson, M., Hansson, H., Sandgren, M., Himmel, M.E., Westh, P., Payne, C.M., Kulminskaya, A.A., Ståhlberg, J., Correlation of structure, function and protein dynamics in GH7 cellobiohydrolases from trichoderma atroviride, T. Reesei and T. Harzianum (2018) Biotechnology for Biofuels, 11 (1), 5, .
P15	Badino, S.F., <u>Kari, J.</u> , Christensen, S.J., Borch, K., Westh, P. , Direct kinetic comparison of the two cellobiohydrolases Cel6A and Cel7A from Hypocrea jecorina (2017) Biochimica et Biophysica Acta - Proteins and Proteomics, 1865 (12), pp. 1739-1745.
P16	Olsen, J.P., <u>Kari, J.</u> Borch, K., Westh, P., A quenched-flow system for measuring heterogeneous enzyme kinetics with sub-second time resolution (2017) Enzyme and Microbial Technology, 105, pp. 45-50.
P17	Badino, S.F., Christensen, S.J., <u>Kari, J.</u> , Windahl, M.S., Hvidt, S., Borch, K., Westh, P., Exo-exo synergy between Cel6A and Cel7A from Hypocrea jecorina: Role of carbohydrate binding module and the endo-lytic character of the enzymes (2017) Biotechnology and Bioengineering, 114 (8), pp. 1639-1647.
P18	Kari, J., Andersen, M., Borch, K., Westh, P., An Inverse Michaelis-Menten Approach for Interfacial Enzyme Kinetics (2017) ACS Catalysis. 7 (7). pp. 4904-4914.
P19	Kari, J., Kont, R., Borch, K., Buskov, S., Olsen, J.P., Cruyz-Bagger, N., Väljamäe, P., Westh, P., Anomeric selectivity and product profile of a processive cellulase (2017) Biochemistry, 56 (1), pp. 167-178.
P20	Sørensen, T.H., Windahl, M.S., McBrayer, B., <u>Kari, J.</u> , Olsen, J.P., Borch, K., Westh, P., Loop variants of the thermophile Rasamsonia emersonii Cel7A with improved activity against cellulose (2017) Biotechnology and Bioengineering, 114 (1), pp. 53-62.
P21	Kont, R., <u>Kari, J.</u> , Borch, K., Westh, P., Väljamäe, P., Inter-domain synergism is required for efficient feeding of cellulose chain into active site of cellobiohydrolase cel7A (2016) Journal of Biological Chemistry, 291 (50), pp. 26013-26023.
P22	Olsen, J.P., Alasepp, K., <u>Kari, J.</u> , Cruys-Bagger, N., Borch, K., Westh, P., Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose (2016) Biotechnology and Bioengineering, 113 (6), pp. 1178-1186
P23	Colussi, F., Sorensen, T.H., Alasepp, K., <u>Kari, J.</u> , Cruys-Bagger, N., Windahl, M.S., Olsen, J.P., Borch, K., Westh, P., Probing substrate interactions in the active tunnel of a catalytically deficient cellobiohydrolase (Cel7) (2015) Journal of Biological Chemistry, 290 (4), pp. 2444-2454.
P24	Kari, J., Olsen, J., Borch, K., Cruys-Bagger, N., Jensen, K., Westh, P., Kinetics of cellobiohydrolase (Cel7A) variants with lowered substrate affinity (2014) Journal of Biological Chemistry, 289 (47), pp. 32459-32468.

LIST OF WORKING PAPERS

Wl	Schaller, K., Molina, G. A., <u>Kari, J</u> ., Schiano-di-Cola, C., Sørensen, T.H. , Borch, K., Peters, G., Westh,
	P. Virtual Bioprospecting of Enzymes - Relating Sequence and Kinetics (Submitted to PNAS)
W2	<u>Kari, J</u> . , Molina, G. A., Schaller, K., Schiano-di-Cola, C., Borch, K., Westh, P. Physical constrain
	control temperature dependency of cellulases and provide new strategies for enzyme design.

- W3 Molina, G. <u>,Kari, J.</u>, A., Schaller, K., Schiano-di-Cola, C., Borch, K., Westh, P. Effects of cellulose crystallinity on linear scaling relationships of cellulases
- W4 Schaller, K., Molina, G. A., Kari, J., Schiano-di-Cola, C., Sørensen, T.H., Borch, K., Peters, G., Westh, In silico driven design of a carbohydrate-binding module for tuning the affinity and activity of cellobiohydrolse Cel7A
- W5 Schiano-di-Cola, C. Kari J., Molina, G., Agger, J., Sørensen, T.H., Morth, P., Borch, K., Westh, P., The endoglucanase CeI7B from Trichoderma reesei: kinetics and mode of action on insoluble cellulose

Papers under development (Early drafts)

- U1 Effect of binding heterogeneity for protein-ligand stability and kinetics. (Preliminary results)
- U2 Inverse Selwyn test A simple test for substrate stability during the enzymatic breakdown of insoluble substrate.
- U3 Tuning affinity and activity of Interfacial enzyme by electrostatic interactions. Effect of enzyme and substrate surface charge. (Preliminary results)
- U4 Enzyme synergy is an evolved strategy to break linear scaling relations in heterogeneous biocatalysis. (Preliminary results)